ساخت نمونههای آزمایشی، فرایندی است که بیشتر در مراکز تحقیقاتی دنبال میشود. اگرچه این روش قابل اعتمادترین روش جهت ارزیابی عملکرد افزاره ها است، اما هنوز هزینه بر و زمان بر است. از سوی دیگر مدلسازی با استفاده از نرم افزار، راهی بسیار سریع و نسبتاً ارزان جهت طراحی افزارهها میباشد. مدلسازی و شبیهسازی اجازه میدهد تا هزاران ترکیب قبل از ساخت نمونههای واقعی مورد بررسی قرار گیرد. در اینجا ما از نرم افزار SILVACO ATLAS جهت مدلسازی افزارهها استفاده خواهیم نمود. بررسی جامع ابزارهای مدلسازی و تحلیل نشان میدهد که مجموعه نرمافزاری سیلواکو در زمره مناسبترین و کاملترین نرم افزارهایی میباشد که با استفاده از ابزارهای مناسب و مدلهای مختلف میتواند در تحلیل رفتار نیمه هادیها مورد استفاده قرار گیرد.
با کمک این ابزارها میتوان پدیدههای مختلفی از جمله هدایت الکتریکی، تحلیل حرارتی، تشعشعات و اثرات لیزر را مدل سازی کرد. انواع زیادی از فرایندهای رشد لایههای نیمههادی و خواص مواد (مانند قابلیت تحرک، پارامترهای بازترکیب، ضرایب یونیزاسیون و پارامترهای نوری) ارائه میشوند تا یک شبیهسازی دقیق انجام پذیرد. شبیهساز ATLAS مجموعهای کامل از ابزارهای پیشرفته جهت تحلیل دو بعدی و سه بعدی ادوات نیمههادی است. علاوه بر این، با دارا بودن چکیدهای از تمام جزئیات ساخت موجب میشود تا طراح بتواند روی طرح واقعی نیز متمرکز شود.
در این پست کتاب آموزش نرم افزار سیلواکو به صورت الکترونیکی به زبان فارسی در اختیار شما قرار داده شده است. این کتاب در 332 صفحه نگارش شده و شامل فصل های زیر می باشد:
فصل اول - آموزش نصب نرم افزار Silvaco
1-1- مقدمه
2-1- طریقه نصب سیلواکو
فصل دوم - معرفی نرم افزار سیلواکو
1-2- مقدمه
2-2- معرفی ابزار شبیه سازی ATLAS
3-2- مدلهای فیزیکی
4-2- مراجع
فصل سوم - شروع کار با Silvaco Atlas
1-3- بررسی اجمالی Deckbuild
2-3- فراخوانی Atlas
3-3- ورودیها و خروجیهای ATLAS
4-3- ساختار فایلهای ورودی در ATLAS
1-4-3- پارامترهای منطقی (Logical)
2-4-3- پارمترهای حقیقی (Real) و صحیح (Integer)
3-4-3- پارامترهای رشتهای (Character)
5-3- تعریف مشخصات ساختاری قطعه
6-3- توضیحات (Comments)
7-3- مش بندی
8-3- ناحیه ها (مناطق)
9-3- اتصالات الکتریکی (الکترودها)
10-3- آلایش
11-3- تعیین مشخصات و خواص مواد
12-3- تعریف ماده
13-3- کتابخانه سیلواکو
14-3- تعیین مدل ها
15-3- اتصالات الکتریکی
16-3- انتخاب روش حل عددی
17-3- مشخصه های تحلیل
1-17-3- دستور log
2-17-3- دستور Solve
1-2-17-3- حل DC
2-2-17-3- حل AC
3-17-3- استخراج داده ها و رسم نمودارها
4-17-3- تبادل داده ها با MATLAB
5-17-3- ذخیره تصاویر Tonyplot
18-3- مراجع
فصل چهارم - شبیه سازی دیود p-n
1-4- مقدمه
2-4- نیمههادیهای نوع n و p
3-4- تئوری باند انرژی
4-4- پیوند p-n
5-4- شبیه سازی
1-5-4- مش بندی ساختار
2-5-4- تعریف مناطق
3-5-4-تعریف الکترودها
4-5-4- تعیین ناخالصی
5-5-4- تعریف اتصالات اهمی و شاتکی
6-5-4- تعریف مدلها
7-5-4- انتخاب روش حل عددی
8-5-4- بایاس افزاره
9-5-4- نمایش نمودار جریان-ولتاژ دیود p-n
10-5-4- نمایش ساختار
1-10-5-4- نمایش پروفایل آلایش
11-5-4- نمایش ترازهای انرژی
6-4- مراجع
فصل پنجم - شبیه سازی ترانزیستور ماسفت
1-5- مقدمه
2-5- ساختار ترانزیستورهای ماسفت
3-5- عملکرد ماسفت بدون اعمال ولتاژ به گیت
4-5- ایجاد کانال برای عبور جریان
5-5- اعمال VDS کوچک
6-5- عملکرد به ازای VDS بزرگ
7-5- مشخصه ولتاژ – جریان ماسفت افزایشی
8-5- ساختار باند در ترکیبات نیمه هادی
9-5- شبیه سازی یک ترانزیستور NMOS (مثال اول ماسفت)
1-9-5- کد نویسی در ATLAS
1-1-9-5- فراخوانی ATLAS
2-1-9-5- تعریف مشبندی
3-1-9-5- تعریف مناطق
4-1-9-5- تعریف الکترودها
5-1-9-5- تعریف میزان و نوع آلایش
6-1-9-5- تعریف اتصالات
7-1-9-5- تعریف مدلها
8-1-9-5- انتخاب روش حل
9-1-9-5- بدست آوردن حل اولیه
10-1-9-5- اجرای شبیه سازی برای بدست آوردن یک حل با شرایط بایاس متفاوت
11-1-9-5- نمایش نتایج و ساختار افزاره
10-5- شبیه سازی یک ترانزیستور NMOS (مثال دوم ماسفت)
1-10-5- کدنویسی
11-5- مراجع
فصل ششم - شبیه سازی ترانزیستورIGBT
1-6- مقدمه
2-6- مزایا و معایب IGBT
3-6- ساختار افزاره
4-6- مدل مداری
5-6- مدهای عملکردی افزاره
1-5-6- حالت سد معکوس
2-5-6- حالت هدایت و سد مستقیم
6-6- مشخصه خروجی
7-6- مشخصه انتقالی
8-6- نوع PT و NPT
9-6- شبیه سازی
10-6- مراجع
فصل هفتم - شبیه سازی ترانزیستور بدون پیوند و بدون آلایش اثر میدانی
1-7- مقدمه
2-7- ترانزیستورهای بدون پیوند
1-2-7- عملکرد ترانزیستور بدون پیوند
1-1-2-7- فیزیک ترانزیستور
2-1-2-7- مکانیزم جریان ترانزیستور
3-7- ترانزیستور بدون آلایش
1-3-7- اثر پلاسمای بار
2-3-7- ساختار ترانزیستور بدون پیوند و بدون آلایش
3-3-7- دیاگرام باند انرژی و عملکرد افزاره
4-7- شبیه سازی
1-4-7- مش بندی
2-4-7- نواحی و الکترودها
3-4-7- آلایش و کانتکتها
4-4-7- مدلهای مورد استفاده در شبیه سازی
5-4-7- نتایج شبیه سازی
5-7- منابع
فصل هشتم - شبیه سازی ترانزیستورهای تونلی
1-8- عملکرد و شبیه سازی ترانزیستورهای تونلی
2-8- معایب ترانزیستورهای اثر میدانی فلز اکسید نیمه هادی
1-2-8- توان مصرفی بالا
2-2-8 شیب زیر آستانه بالا
3-8 عملکرد ترانزیستورهای تونلی
4-8- شبیه سازی ترانزیستور تونلی
1-4-8 نتایج شبیه سازی (دیاگرام باند انرژی، جریان و هدایت انتقالی)
2-4-8- تغییر اندازه پهنای ناحیه تونل زنی
3-4-8- بدست آوردن ولتاژ آستانه
4-4-8- بدست آوردن شیب زیر آستانه نقطهای و متوسط
5-4-8- بدست آوردن فرکانس قطع
5-8- مراجع
فصل نهم - شبیه سازی سلولهای خورشیدی چند پیوندی
1-9- مقدمه
2-9- ویژگی های پایه مواد نیمه هادی
1-2-9- اثر فتوولتاییک
2-2-9- تئوری باند انرژی
3-2-9- فرایند جذب و بازترکیب در نیمههادی
4-2-9- دیود تونلی
3-9- اصول اساسی سلولهای خورشیدی
1-3-9- ولتاژ مدار باز و جریان اتصال کوتاه
2-3-9- ضریب پر شدگی (FF)
3-3-9- بازده تبدیل توان
4-9- چالشهای سلولهای خورشیدی ناهمگون
5-9- لایههای اصلی سلولهای خورشیدی
1-5-9- سلول بالایی و پایینی
2-5-9- لایه Window
3-5-9- لایه Emitter و Base
4-5-9- لایه BSF
5-5-9- ناحیه تونلی
6-9- طراحی سلولهای چندپیوند
1-6-9- شکاف باند
2-6-9- تطبیق شبکه
3-6-9- تطبیق جریان
7-9- ساختار کلی سلول خورشیدی چند پیوند گروه III-V
8-9- انتخاب مواد و ویژگیهای لایه های مختلف
9-9- شبیه سازی در سیلواکو
1-9-9- ساختار افزاره
2-9-9- نور دهی با AM1.5G
3-9-9- رفتار تونلزنی
4-9-9- مشخصه V-I
5-9-9- نرخ تولید فوتون
10-9- کدنویسی در Deckbuild
11-9- نمایش سایر نمودارهای سلول خورشیدی روی ساختار
12-9- نمایش نمودارهای خطی با کمک ساختار
13-9- مراجع
پیوست 1- آشنایی با مدلهای توزیع آماری Silvaco Atlas
پ-1- توزیع آماری حاملها
پ-1-1- فرمی دیراک و روش بولتزمن
پ-1-2- تراکم حامل ذاتی
پ-1-3- باریک شدگی گاف انرژی
پیوست 2- آشنایی با مدلهای تولید و بازترکیب Silvaco Atlas
پ-2- مدلهای تولید و بازترکیب حامل
پ-2-1- مدل شاکلی رید هال
پ-2-2- مدل شاکلی رید هال وابسته به تراکم ناخالصی
پ-2-3- تونل زنی به کمک مشکلات شبکه
پ-2-4- مدل اوژه
پیوست 3- آشنایی با مدلهای موبیلیتی Silvaco Atlas
پ-3-1- مدلهای موبیلیتی
پ-3-1-1- مدلهای میدان ضعیف
پ-3-1-2- مدلهای لایه وارونگی
پ-3-1-3- مدلهای وابسته به میدان عمودی
پ-3-1-4- مدل وابسته به میدان افقی
پ-3-1-5- همخوانی یا عدم همخوانی مدلهای موبیلیتی
پ-3-1-6- خلاصه مدلهای موبیلیتی
پیوست 4- آشنایی با مدلهای تونل زنی باند به باند Silvaco Atlas
پ-4-تونل زنی باند به باند
پ-4-1- دیود تونلی
پ-4-2- انواع تونل زنی باند به باند
پ-4-2-1- تونل زنی باند به باند مستقیم
پ-4-2-2- تونل زنی باند به باند غیر مستقیم (تونل زنی به کمک تله)
پ-4-3- مدلهای تونل زنی باند به باند
پ-4-3-1- مدل استاندارد محلی (BBT.STD)
پ-4-3-2- مدل تونل زنی شِنْک
پ-4-3-3- مدل تونل زنی محلی کِین
پ-4-3-4- مدل تونل زنی باند به باند غیر محلی
پ-4-3-4-1- تقریب WKB و احتمال تونل زنی الکترون
پ-4-3-4-2- محاسبه جریان
پ-4-3-4-3- روش استفاده از مدل غیر محلی در نرم افزار سیلواکو
پ-4-3-4-4- ملاحظات تکمیلی برای مدل غیر محلی
پ-4-3-4-5- خلاصه پارامترهای مربوط به مدل غیر محلی
پیوست 5- آشنایی با مدلهای تحدید کوانتومی Silvaco Atlas
پ-5-1- تحدید کوانتومی در ابعاد نانو
پ-5-2- Bohm Quantum Potential (BQP)
پ-5-2- HANSCHQM
پارت 1: دانلود کتاب آموزش سیلواکو ATLAS - بخش مقدماتی
پارت 2: دانلود کتاب آموزش سیلواکو ATLAS - بخش پیشرفته